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Abstract 

A method is proposed for disentangling exponentials of operators that belong to 
finite-dimensional Lie algebras. A straightforward matrix representation is combined 
with a widely used parameter-differentiation method, giving rise to a simpler and more 
systematic procedure. The SU(1, 1), SU(2) and double photon algebras are explicitly 
considered as illustrative examples. 

1. Introduction 

Ordered products of exponential operators are found to be useful in many 
physical applications [1-6]. For this reason, the Baker-Campbell-Hausdorff  
(BCH) [7] relations have been widely studied. Among the methods proposed to 
obtain them, we mention the use of similarity transformations [8], coherent states [9], 
finite matrix representations [1,6,7, 10, 11] and several forms of parameter differen- 
tiation [12-15]. Particularly interesting is the case of exponentials of operators 
belonging to a finite-dimensional Lie algebra [1 -6 ,8-13 ,  15]. 

The parameter-differentiation method (PDM) [13-15] is powerful and straight- 
forward, and has recently been applied to supergroups [14]. It reduces the problem 
of obtaining the BCH relations to solving a system of first-order, ordinary nonlinear 
differential equations [13-15]. However, the PDM does not seem to be systematic 
enough because a general method for integrating the above-mentioned differential 
equations has not been given. 

For this reason, a matrix representation, which is closely related to the adjoint 
one [16], is proposed here to obtain most (if not all) of the solutions of the PDM 
differential equations in a straightforward, systematic way. This matrix representation 
has recently been applied to the solution of the SchrOdinger equation for time- 
dependent, quantum-mechanical models [17], to the calculations of transition 
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probabilities [18] and other matrix elements [19], and to the construction of exponential 
time-evolution operators [20] which prove to be useful in studying the convergence 
properties of the Magnus expansion [21]. The global validity of the time-evolution 
operator in the ordered product form has also been discussed in this way [22]. One 
of the main advantages of this matrix representation with regard to the treatment 
of time-depefident models is that it enables one to avoid the use of  a particular form 
for the time-evolution operator, thus overcoming the serious problem of the lack of 
globality of such expressions [22,23]. 

In section 2, the PDM is briefly reviewed and the matrix representation is 
introduced. The SU(1, 1), SU(2) and double photon algebras are treated in 
section 3 as particular examples. Further comments and conclusions are found in 
section 4. 

2. The method  

Since the properties of the finite-dimensional Lie algebras are well known in 
many field of physics [ 16.24], we do not deem it necessary to summarize them here. 
A set of operators {X 1 . . . . .  X.} is said to span a finite-dimensional Lie algebra £.x 
if 

n 

[Xj,Xkl=XjXk-XkXj= ~ C~Xm, j,k= 1,2 . . . . .  n, (1) 
m = l  

where the complex numbers Cj'~ are called structure constants. Every element A of 
L x can be written 

tl 

A = ~ akXk, (2) 
k = l  

where the coefficients a~ are complex numbers. We concentrate on the problem of 
rewriting a given exponential operator 

O=expI ~ (3) 

in the ordered product form 

n 

O = 1-I exp(flkXk) = OiI(fl), (4) 
k = l  

where a and fl are column matrices with complex elements aj and fl), j = 1, 2 . . . . .  n, 
respectively. The parameters aj and flj are called canonical coordinates of  the first 
and second kind, respectively [13], and the relation between them is a particular 
case of the BCH formulas. 
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In order to obtain ,6 in terms of  a ,  the PDM [13-15]  has been proposed 
which consists of  defining 

O ( ~ , ) = O i ( ~ x ) = e x p [ ~ 4 = l  czkXk], (5) 

so that O(0) = I is the identity operator and O(1) is the exponential operator (3). 
The method is based on the assumption that the canonical coordinates of  the second 
kind ,8(&), obtained from On[,/l(~.)] = Oi(~,a), are differentiable functions of  ~ for 
all 0 < A. < 1. In such a case, it follows that 

n 

I = b (Xa)oi -1 ( X a )  = a xk, 
k = l  

(6) 

where the dot stands for differentiation with respect to ~t.. A straightforward algebraic 
manipulation shows that a = M #, where the elements and the n x n matrix M are 
analytical functions of/1(~,). If this matrix is non-singular for all 0 < A. < 1, then the 
first-order nonlinear equations 

fl=M-'a, ~1(0)=0, (7) 

can be integrated, and the BCH relations are merely given by ~i(1). However, it 
seems that a good deal of ingenuity is necessary to solve eq. (7), which most 
commonly looks rather intricate. 

For this reason, in what follows we develop a straightforward, systematic 
way of  obtaining the BCH formulas which, as far as we know, has not been used 
before although the main underlying ideas may be known. Let .L r be an operator 
space spanned by {Y1, Y2 . . . . .  Y,,,}, m < n, that satisfies [Lx, Lr] = -Lr. Notice that 
there is always at least one such space because _L x satisfies the definition above. 
(In this case, the representation is called adjoint or regular [16].) If more than one 
space L r is found, the one with the smallest dimension is chosen. 

Every operator A in Lx can be related to an m x m complex matrix A = (Ajk) 
as follows: 

??1 

[A,Yj]= ~ Akjr  k, j =  1,2 . . . . .  m. (8) 
k = l  

In addition, for the exponential operator U = e A, one has 

m 

UYjU -1= ~ UkjYk, J= 1 ..... m, (9) 
k = l  

where 

U = e A. (10) 
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Equations (9) and (10) follow from the well-known expansion 

eAB e -A = B + [A, B] + [A, [A, B]]/2 + . . . .  (11) 

Given the structure constants C~ and the form of A, the calculation of  A offers no 
difficulty. The matrix U is easily obtained by means of  well-known methods of  the 
linear algebra [25]. In addition, if  U 1 and U2 are two exponential operators with 
matrices U~ and U 2, respectively, then the product operator U x U 2 is represented by 
the matrix U~U 2. For this reason, it is not difficult to obtain the matrices O i ( ~ a )  
and OH[r ( ;0 ]  corresponding to Oi(A,a) and OH[fl(A,)], respectively. As a result, 
some of  the BCH relations, if not all of  them, follow from the matrix equality 

OH[/3(;0] = Ox(Za), (12) 

which is an obvious consequence of the fact that if Oi= OiI, then OiYjOi -1 
= Oil YjOi] I for all j = 1, 2 . . . . .  m. The calculation of the matrices for all the exponential 
operators in eq. (12) is not lengthy, as it may appear at first sight, because they can 
be easily derived from a general exponential e A, where A is an arbitrary element 
of  f--x such as the one in eq. (2). 

In some cases, not all the BCH formulas can be obtained in this way because 
the matrix representation just discussed in not faithful [16]. For instance, if one of  
the operators in f--x (say X 1) commutes with all the ones in £ r, then all the operators 
of  the form A + yX1 are related to the same matrix A. Since in such a case the matrix 
OIi is independent of/3 I, this parameter cannot be obtained from eq. (12). However, 
it can certainly be calculated by means of the PDM which now reduces to just one 
nonlinear first-order ordinary differential equation because flz(A,),/33(A) . . . . .  fin(A,) 
are obtained from eq. (12). To see this more clearly., notice that the first row of  
a = M fl can be written/31(A) = al -M12]~2(~l,) - M13/33(~1,) - . . . -  Mln/~,,(A,) because 
M~I = 1. It is worth pointing out that M -I is not required to obtain the remaining 
parameter ill(l) by quadratures. 

Faithful matrix representations for most Lie algebras with applications in 
physics are available [1, 10, 11, 16]. However, in order to make use of  them a good 
deal of  familiarity with Lie algebras and groups is required. On the other hand, the 
method above is based on elementary operator algebra, and for this reason it is 
proposed in this paper. 

3. Examples 

The matrix representation method discussed in the previous section is useful 
in treating many physical problems. Three examples of  disentangling exponential 
operators are considered in what follows. 
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3.1. DOUBLE PHOTON ALGEBRA 

To begin with, consider the algebra spanned by {X 1 = I, X 2 = a +, X 3 = (a+) 2, 
X 4 = a+a, X 5 = a, X 6 = a2}, where 

[a, a +] = I. (13) 

When a + is the adjoint of  a, the well-known boson algebra is obtained. However,  
such a condit ion is not invoked here so that the results are as general as possible. 
It is worth noticing that the basis order has been chosen in such a way that the 
product  form (4) in the case of  the boson algebra corresponds to the normal  ordering 
provided that exp(fl4a+a) is written in normal ordered form [26]. 

A straightforward calculation shows that eq. (7) becomes 

fll = ~1 + f12 0~5 + (f12 + 2 f13 )a6 ,  

]~2 = a2  4- 2fl3 a 5 4- 4f12f13 a6  4- f12 a 4 ,  

]~3 = a3 + 4fl 2 a6  4- 2fl3 a 4 ,  (14) 

]~4 = a4 4- 4fl3 0c6 , 

/~5 = exp( f l4 )a5  + 2fl2 exp(fl4 )•6,  

]~6 = exp(2fl4 )Ct6. 

In order to obtain the BCH formulas, one has to integrate eqs. (14) with the initial 
condi t ions/1(0)  = 0. Although the calculation does not seem to be straightforward, 
similar equations have certainly been solved for the superalgebra osp(1/2) [14]. 

The application of  the method proposed in this paper is remarkably simple 
if L r is chosen to be the set of  operators spanned by {Y1 = I, Y2 = a+, Y3 = a} because 
a tractable 3 × 3 matrix representation is obtained (the faithful matrix repre- 
sentation for this algebra is fourth-dimensional [6, 16]). In this case, L r  is an ideal 
of  L x [16,24]. According to eq. (8), the matrix for a general operator A of  the form 
(2) belonging to L x is 

A = I i a5 -a2  a4 -2a3 

2a6 -a4 

(15) 

from which one can easily derive the matrix representation for the basis operator Xj. 
The parameters fiE(A), fl3(&) . . . . .  f16(,~) are obtained from eq. (12), where the 

matrices Oii[fl(£)] and Oi (A,a )a re ,  respectively, given by 
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l1  /~5 -- 2/~2/~6 exp(--fl4) --/~2 exp(-/~4 ) ] 

0 --4/~3 j~6 exp(-/34 ) + exp(/34 ) -2/33 exp(-/34 )J, 

0 2/~ 6 exp(-/34) exp(-/34) 

(16) 

and 

1 62 [1 - c o s ( ) ~ ) ] / ~  2 

+ a5 sin(X5)/~ 

0 C O S ( . ~ ) +  ~t~ 4 sin()tS)/S 

0 2a  6 sin(25)~5 

51 [1 - cos(XS)]/5 2 

- a2 sin(~,S)/5 

-2a3  sin(&5)/5 

cos(XS)- a4 sin(&5)/5 

(17) 

with ~2 = 4 a 3 a  6 _ a 2, ~1 = a2a4- 2 a 3 a 5  and 52 = asa4-  2 a 2 a  6. One can easily 
derive an alternative equivalent expression for the latter matrix by substituting 
-A a, cosh(2~A) and sinh(&A)/A for 62, cos(XS) and sin(X~/6, respectively. 

As argued before, /~1 cannot  be obtained in this way because the matrix 
representation is not faithful. This parameter can be easily obtained as discussed in 
the previous section. However, here we use the first equation in (14), which leads 
to 

j~l(~)--- al~+~{a5~2(~')+a6[j~2(~')2+2~3(~l. ')]}d~ p. (18)  

0 

Finally, to obtain the BCH formulas, it is only necessary to set ~ = 1. 
The double photon algebra is useful in treating time-dependent harmonic 

oscillators [ 1,4-  6]. If the coordinate-momentum representation is used, the matrix 
method developed above leads to a well-known representation for the WSL(2, R) 
group, which has also been proposed to obtain the BCH formulas [27]. 

3.2. SU(1, 1) AND SU(2) ALGEBRAS 

The generators Jo, J+, and J_ 
following commutation relations: 

of the SU(1, 1) and SU(2) algebras satisfy the 

[Jo, J+] = J+,  [J0, J - ]  = - J - ,  [ J - ,  J+] = 20-2Jo, (19) 

where 0 -2= 1 for the former and 0-2= _1 for the latter, respectively. 
There is a well-known realization for these algebras based on the Pauli 

matrices [1,10,16]. This 2 x 2 faithful matrix representation, which allows 
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disentanglement of  any exponential operator, can be easily derived by means of  the 
procedure given before. For the sake of  concreteness, we arbitrarily choose X 1 = J+, 
X2 = Jo, and X 3 = J_. Since the operators 

X I = 0"(a+)2/2, X 2 = (a+a + 1/2)/2, X s = 0.a2/2 (20) 

satisfy the commutation relations (19), we can choose / ; r  to be the set of  linear 
combinations of  Y1 = a+ and Y2 = a. Notice that L r is neither a subset of  L x 
nor even an algebra. According to eq. (8), the matrix for a general operator A of  
the form (2) belonging to the algebra is 

1 A k as 0" 1 • -~-a2 
(21) 

On arguing as before, we find that 

O I I  ( ~ )  = 

and 

O i ( a )  = 

"exp(fl2/2) - 0"2#1 f13 exp(- f l2 /2)  

f13 0" exp( - f l2 /2)  

- - i l l  0.exp ( - f 1 2 / 2 ) ) ,  

exp(- f l2 /2)  

cos(a) + Ct 2 sin(S)/2S 

aS 0. s in(S)/S 

- a l  0.sin(S)/S 1' 

c o s ( S ) -  a2 sin(S)/26 

(22) 

(23) 

where S 2 = 0 . 2 a l t ~  3 -- a 2 / 4 .  On equating these matrices, we obtain the BCH formulas 

fll = al s in(6) /[Scos(6)-  az sin(S)/2], 

f12 = - 2  In [cos (S ) -  O~ 2 s in(S)/26] ,  

f13 = a3 sin( 6) /[ 6 cos( S) - a2 sin(S)/2], 

(24) 

which reduce to those derived before by means of  the PDM for the special case 
a 1 = "r, a 2 = - i a ,  and a 3 = -z*,  where * denotes the complex conjugation [13]. 

4. F u r t h e r  comments  and  conclusions 

A matrix representation method has been developed which is useful in 
disentangling exponential operators. When it is faithful, the BCH formulas are 
obtained from a simple matrix equality; otherwise, it is found to be a useful complement 
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of  the PDM [13-15] ,  giving directly the solutions to almost all the differential 
equations and avoiding the inversion of  the matrix M when there is just one 
undetermined parameter. An attractive feature of  the method is that 01 and the factors 
in Oi~ are easily obtained from the matrix for a single exponential of  a general 
element of  the Lie algebra (the operator A in eq. (2)). 

When f_2r= _L x,  the present matrix representation becomes the adjoint or 
regular one [16], in which case m = n. However, it is frequently possible to find a 
set L r with a smaller dimension. 

Since the PDM has been applied to superalgebras and supergroups [14], it is 
reasonable to assume that a slightly modified version of  the present procedure can 
also be useful in treating such cases. 

In closing, it is worth mentioning that it is not always possible to write the 
exponential of  an element of  the Lie algebra as an arbitrarily ordered product. For 
instance, eqs. (24) are no longer valid when 2Scos(S) = o~2sin(S), which can be 
satisfied by several values of the canonical coordinates of the first kind. The global 
validity of the BCH formulas has been discussed in a number of  relevant papers [23]. 
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